

2 µm band low frequencies to 12 GHz Phase Modulators

MODULATOR

The Photline MPX2000 and MPZ2000 are phase modulators specially designed for phase modulation in the 2.0 μm wavelength band from low frequencies to 10 GHz and above. The MPX/MPZ2000 incorporate 2.0 μm specific waveguides and are pigtailed with 2.0 μm polarization maintaining fibers.

FEATURES

- Low insertion loss
- Low Vπ
- 2 µm specific design

APPLICATIONS

- LIDAR
- Gas sensing
- Spectral broadening
- Spectroscopy
- Seed source
- Research & development

OPTIONS

- 1550 nm, 1000 nm, 800 nm versions
- Hermetic sealing

RELATED EQUIPMENTS

- Intensity modulator
- · 2 MHz to 500 MHz amplifiers
- Matched RF amplifiers
- Spectral Broadening ModBox

MPX2000-LN-0.1 Performance Highlights

Parameter	Min	Тур	Max	Unit
Operating wavelength	1900	2000	2200	nm
Electro-optical bandwidth	100	150	-	MHz
Vπ RF @50 kHz	-	5	-	V
Insertion loss	-	3	-	dB

Specifications given at 25 °C, 2050 nm

MPZ2000-LN-10 Performance Highlights

Parameter	Min	Тур	Max	Unit
Operating wavelength	1900	2050	2200	nm
Electro-optical bandwidth	10	12	-	GHz
Vπ RF @50 kHz	-	6.5	-	V
Insertion loss	-	3	4	dB

Specifications given at 25 °C, 2050 nm

 $2~\mu m$ band low frequencies to 12 GHz Phase Modulators

MODULATOR

MPX2000-LN-0.1 150 MHz Phase Modulator

Electrical Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Electro-optic bandwidth	S ₂₁	RF electrodes	100	150	-	MHz
Vπ RF @50 kHz	Vπ RF _{50 kHz}	RF electrodes	-	3.5	-	V
RF input impedance	Z _{in-RF}	-	-	10	-	kΩ

Optical Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Crystal	-	-		Lithium Niob	ate X-Cut Y-Prop	
Waveguide process	-	-		Ti d	iffusion	
Operating wavelength	λ	-	1900	2000	2200	nm
Insertion loss	IL	Without connectors	-	3	5	dB
Optical return loss	ORL	-	-40	-45	-	dB

All specifications given at 25 °C, 2050 nm, unless differently specified

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Parameter	Symbol	Min	Max	Unit
Modulation voltage range	EV _{in}	-20	20	V
Optical input power	OP _{in}	-	20	dBm
Operating temperature	ОТ	0	+70	°C
Storage temperature	ST	-40	+85	°C

 $2~\mu m$ band low frequencies to 12 GHz Phase Modulators

MODULATOR

MPZ2000-LN-10
10 GHz Phase Modulator

Electrical Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Electro-optic bandwidth	S ₂₁	-	10	12	-	GHz
Ripple S ₂₁	ΔS ₂₁	-	-	0.5	1	dB
Electrical return loss	S ₁₁	-	-	-12	-10	dB
Vπ RF @50 kHz	VπRF _{50 kHz}	-	-	6.5	7.5	V
Impedance matching	Z _{in-RF}	-	-	50	-	Ω

 $^{50\,\}Omega$ RF input

Optical Characteristics

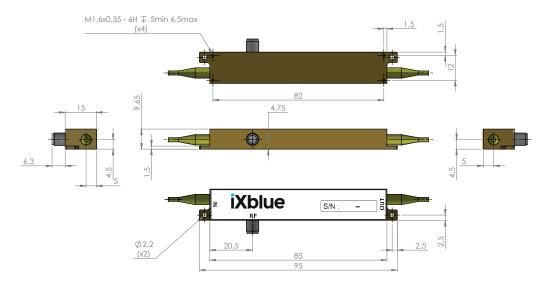
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Crystal	-	-		Lithium Nioba	te X-Cut Y-Prop	
Waveguide process	-	-		Ti diff	fusion	
Operating wavelength	λ	-	1900	2000	2200	nm
Insertion loss	IL	Without connectors	-	3	4	dB
Optical return loss	ORL	-	-40	-45	-	dB

All specifications given at 25 °C, 2050 nm, unless differently specified

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Parameter	Symbol	Min	Max	Unit
RF input power	EP _{in}	-	28	dBm
Optical input power	OP _{in}	-	20	dBm
Operating temperature	ОТ	0	+70	°C
Storage temperature	ST	-40	+85	°C



2 μm band low frequencies to 12 GHz Phase Modulators

MODULATOR

Mechanical Diagram and Pinout

All measurements in mm

Port	Function	Note
IN	Optical input port	2000 nm Polarization maintaining fiber, Nufern PM1950, length : 1.5 meter
OUT	Optical output port	2000 nm Polarization maintaining fiber, Nufern PM1950, length : 1.5 meter
RF	RF input port	Wiltron female K (SMA compatible)

Ordering information

MPX2000-LN-0.1-Y-Z-AB-CD / MPZ2000-LN-10-Y-Z-AB-CD

Y = Input fiber: P Polarization maintaining S Standard single mode

Z = Output fiber: P Polarization maintaining S Standard single mode

AB = Input connector: 00 bare fiber FA FC/APC FC FC/SPC

CD = Output connector: 00 bare fiber FA FC/APC FC FC/SPC

Note: optical connectors are Senko with narrow key or equivalent

About us

iXBlue Photonics includes iXBlue iXFiber brand that produces specialty optical fibers and Bragg gratings based fiber optics components and iXBlue Photline brand that provides optical modulation solutions based on the company lithium niobate (LiNbO₂) modulators and RF electronic modules.

iXBlue Photonics serves a wide range of industries: sensing and instruments, defense, telecommunications, space and fiber lasers as well as research laboratories all over the world.

3, rue Sophie Germain 25 000 Besançon - FRANCE

Tel.: +33 (0) 381 853 180 - Fax: +33 (0) 381 811 557

Ixblue reserves the right to change, at any time and without notice, the specifications, design, function or form of its products described herein. All statements, specification, technical information related to the products herein are given in good faith and based upon information believed to be reliable and accurate at the moment of printing. However the accuracy and completeness thereof is not guaranteed. No liability is assumed for any inaccuracies and as a result of use of the products. The user must validate all parameters for each application before use and he assumes all risks in connection with the use of the products